skip to main content


Search for: All records

Creators/Authors contains: "Hu, Huancui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The timescales associated with precipitation moving through watersheds reveal processes that are critical to understanding many hydrologic systems. Measurements of environmental stable water isotope ratios (δ2H and δ18O) have been used as tracers to study hydrologic timescales by examining how long it takes for incoming precipitation tracers become stream discharge, yet limited measurements both spatially and temporally have bounded macroscale evaluations so far. In this observation driven study across North American biomes within the National Ecological Observation Network (NEON), we examined δ18O and δ2H stable water isotope in precipitation (δP) and stream water (δQ) at 26 co‐located sites. With an average 54 precipitation samples and 139 stream water samples per site collected over 2014–2022, assessment of local meteoric water lines and local stream water lines showed geographic variation across North America. Taking the ratio of estimated seasonal amplitudes of δP and δQ to calculate young water fractions (Fyw), showed aFywrange from 1% to 93% with most sites havingFywbelow 20%. Calculated mean transit times (MTT) based on a gamma convolution model showed a MTT range from 0.10 to 13.2 years, with half of the sites having MTT estimates lower than 2 years. Significant correlations were found between theFywand watershed area, longest flow length, and the longest flow length/slope. Significant correlations were found between MTT and site latitude, longitude, slope, clay fraction, temperature, precipitation magnitude, and precipitation frequency. The significant correlations between water timescale metrics and the environmental characteristics we report share some similarities with those reported in prior studies, demonstrating that these quantities are primarily driven by site or area specific factors. The analysis of isotope data presented here provides important constraints on isotope variation in North American biomes and the timescales of water movement through NEON study sites.

     
    more » « less
  2. Abstract

    An atmospheric river (AR) impacting Tasmania, Australia, and the Southern Ocean during the austral summer on 28–29 January 2018 during the Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study campaign is analyzed using a modeling and observational approach. Gulfstream‐V dropsonde measurements and Global Precipitation Measurement radar analyses were used in conjunction with Weather Research and Forecasting model simulations with water vapor tracers to investigate the relative contributions of tropical and midlatitude moisture sources to the AR. Moisture associated with a monsoonal tropical depression became entrained into a midlatitude frontal system that extended to 60°S, reaching the associated low‐pressure system 850 km off the coast of Antarctica—effectively connecting the tropics and the polar region. Tropical moisture contributed to about 50% of the precipitable water within the AR as the flow moved over the Southern Ocean near Tasmania. The tropical contribution to precipitation decreased with latitude, from >70% over Australia, to ~50% off the Australian coast, to less than 5% poleward of 55°S. The integrated vapor transport (IVT) through the core of the AR reached above 500 kg m−1 s−1during 1200 UTC 28 January to 0600 UTC 29 January, 1.29 times the average amount of water carried by the world's largest terrestrial river, the Amazon. The high IVT strength might be attributed to the higher water vapor content associated with the warmer temperatures across Australia and the Southern Ocean in austral summer.

     
    more » « less